An Imbalanced Data Rule Learner

نویسندگان

  • Canh Hao Nguyen
  • Tu Bao Ho
چکیده

Imbalanced data learning has recently begun to receive much attention from research and industrial communities as traditional machine learners no longer give satisfactory results. Solutions to the problem generally attempt to adapt standard learners to the imbalanced data setting. Basically, higher weights are assigned to small class examples to avoid their being overshadowed by the large class ones. The difficulty determining a reasonable weight for each example remains. In this work, we propose a scheme to weight examples of the small class based solely on local data distributions. The approach is for categorical data, and a rule learning algorithm is constructed taking the weighting scheme into account. Empirical evaluations prove the advantages of this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INDUCING VALUABLE RULES FROM IMBALANCED DATA: THE CASE OF AN IRANIAN BANK EXPORT LOANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

Evolutionary rule-based systems for imbalanced data sets

This paper investigates the capabilities of evolutionary online rule-based systems, also called Learning Classifier Systems (LCSs), for extracting knowledge from imbalanced data. While some learners may suffer from class imbalances and instances sparsely distributed around the feature space, we show that LCSs are flexible methods that can be adapted to detect such cases and find suitable models...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

INDUCING VALUABLE RULES FROM IMBALANCED DATA: THE CASE OF AN IRANIAN BANK EXPORT LOANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005